文章信息:Yanites, B. J., Clark, M. K., Roering, J. J., West, A. J., Zekkos, D., Baldwin, J. W., ... & Pierce, J. (2025). Cascading land surface hazards as a nexus in the Earth system. Science, 388, eadp9559. https://doi.org/10.1126/science.adp9559
整理人:徐嘉苗,2025级硕士研究生
整理时间:2025年8月5日
Abstract:
BACKGROUND: Earth’s surface is sculpted by numerous processes that move sediment, ranging from gradual and benign to abrupt and catastrophic. Although infrequent, high-magnitude sediment mobilization events can be hazardous to people and infrastructure, leaving topographic imprints on the landscape and remarkable narratives in the historical record. Hazardous events such as fires, storms, and earthquakes accelerate erosion and sediment transport, increasing landscape sensitivity to subsequent perturbations, thus forming a cascading hazard. Although the redistribution of sediment across Earth’s landscape can result in higher risks to vulnerable populations, cascading processes are commonly unaccounted for in hazard assessments. Cascading hazards can occur almost immediately after triggering events, such as coseismic landslides, or over months, years, or even decades after an initial perturbation, such as debris flows after wildfires or flooding in channels alluviated by volcanic debris. Sediment cascades span Earth’s surface, from mountaintops to river valleys, where erosion, deposition, and aggradation can lead to a myriad of hazardous processes, including decreased river conveyance capacity, which increases the likelihood of downstream flooding. An improved understanding of the magnitude, frequency, and persistence of cascading hazards is critical given the rapid changes in the frequency and severity of storms, fires, sea-level change, and cryospheric melting, as well as the expansion of high-population-density urban footprints in regions susceptible to solid Earth hazards. Understanding the full consequences and underlying physics of Earth’s cascading land surface hazards can help minimize future human and economic losses.
ADVANCES: Recent research reveals crucial surface process interactions that link distinct components of Earth systems on human timescales (seconds to centuries) and give rise to cascading hazards. For example, solid Earth processes, such as earthquakes and volcanic eruptions, can generate widespread deformation and stress changes that affect rock strength and susceptibility to mass wasting. Likewise, the atmospheric triggering of hazards because of extreme precipitation, drought, and warming varies regionally and can be amplified or dampened depending on topography, geologic materials, and seismic activity, which are tied to the tectonic history of a region. New models capable of linking atmospheric forcings and solid Earth phenomena to land surface processes provide critical tools for quantifying how different Earth systems interact to initiate and sustain cascading hazards. Advances in high-resolution remote sensing tools provide accurate and extensive datasets to calibrate and validate models. Moreover, recent advances in critical zone science illuminate how the coupling of hydrologic, geologic, and biologic processes modifies near-surface material properties, altering their susceptibility to land surface hazards. These methodological and theoretical advances provide an opportunity to anticipate and forecast how the interaction of Earth systems affects land surface hazards in a changing world.
OUTLOOK: The science of land surface processes—encompassing the atmospheric, hydrospheric, biospheric, and solid Earth system sciencesis well positioned to advance our ability to forecast cascading hazards and enhance societal resilience through improved risk assessment and management. However, to achieve such advances, cross-disciplinary research teams are needed to address new research paradigms such as “How do different Earth systems interact to influence the magnitude, frequency, and longevity of impactful events?” Addressing these inherently complex and multidisciplinary questions requires a holistic approach to cascading hazard science that considers the impact of trigger magnitude, the influence of preconditioning along the cascade pathway from critical zone processes, and the interaction of processes along the cascade. Such advances can help interpret the emergence and persistence of cascading hazards and anticipate how they will be influenced by climate and land use changes. Linking Earth systems within a cascading hazard framework can inform theories, mechanistic models, and data analyses capable of quantifying the hazards of cascading processes on the ever-evolving Earth’s surface, ultimately strengthening community resiliency and sustainability.
摘要:
研究背景
地球表面经历着从渐进温和到突发灾难等多种沉积物迁移过程的塑造。尽管发生频率较低,但高强度沉积物迁移事件可能对人类和基础设施构成威胁,不仅在地貌上留下印记,也在历史记录中镌刻下惊人篇章。火灾、风暴和地震等灾害事件会加速侵蚀与沉积物运移,提升地表环境对后续扰动的敏感性,从而形成级联灾害。虽然沉积物在全球地表的重分布会加剧脆弱人群面临的风险,但现行灾害评估体系往往未能纳入这些级联过程。级联灾害可能在触发事件后瞬间发生(如同震滑坡),也可能在初始扰动后数月、数年甚至数十年才显现(如野火引发的泥石流或火山碎屑淤积河道导致的洪水)。沉积物级联效应遍布地表系统——从山巅到河谷,侵蚀、沉积与加积作用可能引发一系列灾害过程,包括河道行洪能力下降从而加剧下游洪涝风险。鉴于风暴、火灾、海平面变化与冰冻圈消融的频率和强度正在剧变,加之高人口密度城市向固体地球灾害易发区的扩张,深入理解级联灾害的强度、频率和持续期显得尤为关键。唯有全面认知地表级联灾害的深层物理机制与最终后果,方能有效减少未来人员与经济损失
研究进展
最新研究揭示了地表过程的关键相互作用——这些作用在人类时间尺度(秒至百年)上串联地球系统各组分,并引发级联灾害。例如,地震和火山喷发等固体地球过程可造成大范围形变与应力变化,影响岩体强度及崩滑易发性;而极端降水、干旱与变暖等大气触发因素则因地形、地质材料和地震活动(与区域构造历史相关)产生区域性增强或削弱效应。新兴模型能够将大气强迫作用与固体地球现象同地表过程相耦合,为量化不同地球系统如何相互作用以触发和维持级联灾害提供了关键工具。高分辨率遥感技术的进步提供了精准海量数据集用于模型校准与验证,而关键带科学的最新突破则阐明了水文-地质-生物过程的耦合如何改变近地表物质属性,进而调控其灾害敏感性。这些方法与理论突破为我们创造了机遇,得以预判变化世界中地球系统相互作用对地表灾害的影响。
未来展望
地表过程科学——涵盖大气圈、水圈、生物圈与固体地球系统科学——已具备提升级联灾害预测能力的基础,可通过改进风险评估与管理增强社会韧性。但实现这一目标需要组建跨学科团队,以应对诸如"不同地球系统如何相互作用以调控灾害事件的强度、频率与持续期"等新研究范式。解决这些本质复杂的多学科问题,要求采用整体性研究路径:既要考量触发事件强度的影响,也要关注临界带过程对级联路径的预调节作用,还需解析级联链中过程的交互机制。此类突破不仅能帮助解读级联灾害的萌生与存续规律,还可预判气候与土地利用变化对其的影响。将地球系统纳入级联灾害框架进行关联研究,可催生能够量化地表动态演变过程中级联灾害风险的理论体系、机理模型与数据分析方法,最终增强社区韧性与可持续性。
1. 研究背景
地表灾害(滑坡、洪水等)常因地震、火灾、暴雨等触发形成链式反应(cascading hazards),但传统灾害模型忽视跨系统相互作用,导致风险低估。
2. 研究意义
构建“地表灾害链”框架,整合大气—冰冻圈—岩石圈—临界带过程,提升对复合灾害链的预测能力,支持长期韧性规划。
3. 研究方法
理论框架:定义地表灾害链为“事件直接改变后续灾害概率”的链式过程。
技术整合:高分辨率遥感(卫星、LiDAR、无人机)、临界带科学、地貌演化模型。
案例研究:1950年阿萨姆地震(20年后引发孟加拉洪水)、2018年加州Montecito火灾后泥石流。
4. 主要结论
级联灾害持续时间从秒(地震滑坡)到数十年(火山沉积物流长期影响)。
临界带特性(岩土风化、植被根系)调控灾害链强度与持续时间。
气候变化加剧触发事件频率(如极端降雨、火灾),使灾害链非平稳性增强。
5. 研究展望
需发展跨学科模型(如耦合大气—水文—地貌过程),建立“级联灾害指数”以量化区域风险,并纳入政策制定
6. 研究主要图表

01 与其他气象地质灾害相比,陆面灾害发生的频率较高

02 地表灾害链概念图及其对频率规模空间的影响

03 2017年美国加利福尼亚州南部的托马斯大火和随后的泥石流表明,由于预测、观测和后报技术的进步,地表灾害链科学的能力不断增强

04 通过一个假设的级联事件示意图来说明灾害链科学远程观测技术的演变如何改变了过去20年的数据可用性

05 系统和过程的交互流程图

06 基于危害指数的概念框架,量化了危害的大小,可用于可视化触发事件后灾害链危害大小的轨迹范围
原文链接:https://www.science.org/doi/10.1126/science.adp9559
原文转引:https://mp.weixin.qq.com/s/6WBlzGmC8wdlxQ3h1QXxOg